- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lazebnik, Felix (4)
-
Cioaba, Sebastian (1)
-
Leshock, Lorinda (1)
-
Sun, Shuying (1)
-
Taranchuk, Vladislav (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lazebnik, Felix; Taranchuk, Vladislav (, The Electronic Journal of Combinatorics)Let $$p$$ be an odd prime, $q=p^e$, $$e \geq 1$$, and $$\mathbb{F} = \mathbb{F}_q$$ denote the finite field of $$q$$ elements. Let $$f: \mathbb{F}^2\to \mathbb{F}$$ and $$g: \mathbb{F}^3\to \mathbb{F}$$ be functions, and let $$P$$ and $$L$$ be two copies of the 3-dimensional vector space $$\mathbb{F}^3$$. Consider a bipartite graph $$\Gamma_\mathbb{F} (f, g)$$ with vertex partitions $$P$$ and $$L$$ and with edges defined as follows: for every $$(p)=(p_1,p_2,p_3)\in P$$ and every $$[l]= [l_1,l_2,l_3]\in L$$, $$\{(p), [l]\} = (p)[l]$$ is an edge in $$\Gamma_\mathbb{F} (f, g)$$ if $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = g(p_1,p_2,l_1).$$The following question appeared in Nassau: Given $$\Gamma_\mathbb{F} (f, g)$$, is it always possible to find a function $$h:\mathbb{F}^2\to \mathbb{F}$$ such that the graph $$\Gamma_\mathbb{F} (f, h)$$ with the same vertex set as $$\Gamma_\mathbb{F} (f, g)$$ and with edges $(p)[l]$ defined in a similar way by the system $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = h(p_1,l_1),$$ is isomorphic to $$\Gamma_\mathbb{F} (f, g)$$ for infinitely many $$q$$? In this paper we show that the answer to the question is negative and the graphs $$\Gamma_{\mathbb{F}_p}(p_1\ell_1, p_1\ell_1p_2(p_1 + p_2 + p_1p_2))$$ provide such an example for $$p \equiv 1 \pmod{3}$$. Our argument is based on proving that the automorphism group of these graphs has order $$p$$, which is the smallest possible order of the automorphism group of graphs of the form $$\Gamma_{\mathbb{F}}(f, g)$$.more » « less
-
Lazebnik, Felix (, Discrete Mathematics)
-
Cioaba, Sebastian; Lazebnik, Felix; Sun, Shuying (, The Electronic journal of combinatorics)
An official website of the United States government

Full Text Available